Toward Optimal Stratification for Stratified Monte-Carlo Integration
نویسندگان
چکیده
We consider the problem of adaptive stratified sampling for Monte Carlo integration of a noisy function, given a finite budget n of noisy evaluations to the function. We tackle in this paper the problem of adapting to the function at the same time the number of samples into each stratum and the partition itself. More precisely, it is interesting to refine the partition of the domain in area where the noise to the function, or where the variations of the function, are very heterogeneous. On the other hand, having a (too) refined stratification is not optimal. Indeed, the more refined the stratification, the more difficult it is to adjust the allocation of the samples to the stratification, i.e. sample more points where the noise or variations of the function are larger. We provide in this paper an algorithm that selects online, among a large class of partitions, the partition that provides the optimal trade-off, and allocates the samples almost optimally on this partition.
منابع مشابه
Asymptotically Optimal Importance Sampling and Stratification for Pricing Path-dependent Options
This paper develops a variance reduction technique for Monte Carlo simulations of path-dependent options driven by high-dimensional Gaussian vectors. The method combines importance sampling based on a change of drift with stratified sampling along a small number of key dimensions. The change of drift is selected through a large deviations analysis and is shown to be optimal in an asymptotic sen...
متن کاملAdaptive Stratified Sampling for Monte-Carlo integration of Differentiable functions
We consider the problem of adaptive stratified sampling for Monte Carlo integration of a differentiable function given a finite number of evaluations to the function. We construct a sampling scheme that samples more often in regions where the function oscillates more, while allocating the samples such that they are well spread on the domain (this notion shares similitude with low discrepancy). ...
متن کاملMinimax Number of Strata for Online Stratified Sampling Given Noisy Samples
We consider the problem of online stratified sampling for Monte Carlo integration of a function given a finite budget of n noisy evaluations to the function. More precisely we focus on the problem of choosing the number of strata K as a function of the budget n. We provide asymptotic and finite-time results on how an oracle that has access to the function would choose the partition optimally. I...
متن کاملActive Regression by Stratification
We propose a new active learning algorithm for parametric linear regression with random design. We provide finite sample convergence guarantees for general distributions in the misspecified model. This is the first active learner for this setting that provably can improve over passive learning. Unlike other learning settings (such as classification), in regression the passive learning rate of O...
متن کاملInfinite-Dimensional Monte Carlo Integration
In mathematics, Monte Carlo integration is a technique for numerical integration using random numbers and a a particular Monte Carlo method numerically computes the Riemann integral. Whereas other algorithms usually evaluate the integrand at a regular grid, Monte Carlo randomly chooses points at which the integrand is evaluated. This method is particularly useful for higher-dimensional integral...
متن کامل